统计算法_概率基础

2019-05-02 作者:计算机教程   |   浏览(88)

本次有以下函数

本次函数有

1、简单边际概率

1、阶乘

2、联合概率

2、计算组合数C

3、条件概率

3、二项概率分布

4、随机变量期望值

4、泊松分布

5、随机变量方差

以下是历史函数

6、随机变量协方差

create_rand_list() #创建一个含有指定数量元素的list
sum_fun() #累加
len_fun() #统计个数
multiply_fun() #累乘
sum_mean_fun() #算数平均数
sum_mean_rate() #算数平均数计算回报
median_fun() #中位数
modes_fun() #众数
ext_minus_fun() #极差
geom_mean_fun() #几何平均数
geom_mean_rate() #几何平均回报

7、联合协方差

var_fun() #方差-样本S^2
covar_fun() #协方差-样本S
trans_coef_fun() #变异系数CV
pearson_fun() #相关系数-样本r

8、组合期望回报

unite_rate_fun #联合概率
condition_rate_fun #条件概率
e_x #随机变量期望值
var_rand_fun #随机变量方差
covar_rand_fun #随机变量协方差
covar_rand_xy_fun #联合协方差
e_p #组合期望回报
var_p_fun #投资组合风险
bayes #贝叶斯

9、投资组合风险

---------------以上是旧的------------------------------------------------------------------------
---------------以下是新的------------------------------------------------------------------------

 

继续概率,本次是二项分布和泊松分布,这个两个还是挺好玩的,可以作为预测函数用,因为函数比较少,本次就不给例子了,但是会对函数做逐一说明

 

1、阶乘n!
就是每次-1乘,直到*1,例如5! = 5 * 4 * 3 * 2 * 1 = 120,这个是正常的,但是在写函数的时候这样算法效率会低些,因此直接反过来,1*2*3...这种,那么函数就是

 

def fact_fun:  if n == 0:    return 1  n  = 1  fact_list = [i for i in range(1,n)]  fact_num = multiply_fun(fact_list)  return fact_num

 

2、计算组合数C
C = n! / (x! *
表示从n个样本中抽取x个样本单元,可能出现结果的组合数,例如从5个物品中抽取3个物品,这三个物品的组合数就是10种

说概率前复习下历史函数
create_rand_list() #创建一个含有指定数量元素的list
sum_fun() #累加
len_fun() #统计个数
multiply_fun() #累乘
sum_mean_fun() #算数平均数
sum_mean_rate() #算数平均数计算回报
median_fun() #中位数
modes_fun() #众数
ext_minus_fun() #极差
geom_mean_fun() #几何平均数
geom_mean_rate() #几何平均回报

def c_n_x(case_count,real_count):  fact_n = fact_fun(case_count)  fact_x = fact_fun(real_count)  fact_n_x = fact_fun(case_count - real_count)  c_n_x_num = fact_n / (fact_x * fact_n_x)  return c_n_x_num

var_fun() #方差-样本S^2
covar_fun() #协方差(标准差)-样本S
trans_coef_fun() #变异系数CV
pearson_fun() #相关系数-样本r
---------------以上是旧的------------------------------------------------------------------------
---------------以下是新的------------------------------------------------------------------------
概率这块整个给我看了个懵逼,后面的代码都是按照我自己理解写的,如果有错误,欢迎指正
另外说明的是概率是很精细的事情,所以浮点型的数字会比较多,而且小数位数十分精确,除特殊情况,我就四舍五入截取到小数点后4位
简单事件,就是只有一个特征的事件,所有可能事件的集合就是样本空间,举个例子
有两袋子花生米,第一个袋子有32个花生米,其中有3个坏的,第二个袋子有17个花生米,其中有5个坏的,这个例子的样本空间就是下面这样。我想说,要是我选了B袋子我一定诅咒卖花生的老板吃方便面没有调料
永利电子游戏网站,袋子|是否坏的|花生米个数
A   |0       |3
A   |1       |29
B   |0       |5
B   |1       |12
为了方便起见,是True用0表示,否false用1表示
1、简单边际概率,记做P(A)
这个容易理解,比如计算坏花生米的出现率,这个简单,就不单独写代码了
P(A) = 坏花生米/总数 = 8/49 = 0.1633

3、二项概率分布
执行n次伯努利试验,伯努利试验就是执行一次只有两种可能且两种可能互斥的事件,比如丢硬币实验,执行n次,成功k次的概率
P = C * p^k * ^
n=5 k=3 P = p p p
p表示一个事件的成功概率,失败则是1 - p

2、联合概率

def binomial_fun(case_count,real_count,p):  c_n_k_num = c_n_x(case_count,real_count)  pi = (p ** real_count) *  ** (case_count - real_count))  binomial_num = c_n_k_num * pi  return binomial_num

既然是联合了,就需要两个事件,记为P(A且B),∩这玩意就是且
就是A事件和B事件联合成同一个事件的概率,从A袋子吃出一个坏花生米的概率就是联合概率,事件A是坏花生米,事件B是A袋子
这个比较有分歧,比较广泛使用的是
P(A∩B) = 3/49 = 0.0612
另一种就是
P(A∩B) = 3/32*0.5 = 0.0517
我个人比较同意第一种,但是受到其他事件的影响比较大,考虑如果B袋子有10000个花生,坏花生数不变,结果会有很大差异
那么函数就有了

4、泊松分布
给定的一个机会域中,机会域可以是一个范围,也可以是一段时间,在这个机会域中可能发生某个统计事件的概率,举个例子,比有个商店,每小时平均有10位顾客光顾,那么一个小时有13位顾客光顾的概率,就是泊松分布,13位顾客光顾就是统计事件
P = /X! = (2.7182818^-10*10^13)/13! = 0.0729
这里的λ是指平均值,可以使用算数平均数得到,e是自然常数~=2.7182818,有函数

def unite_rate_fun(condition_count,all_count):
  p_a_with_b = float(condition_count) / all_count
  return p_a_with_b
def poisson_fun(chance_x, case_list = [0],mean_num = 0):  chance_x_fact = fact_fun  e = 2.7182818  if len_fun(case_list) == 1 and case_list[0] == 0:    poisson_num = ((e ** (0-mean_num)) * mean_num ** chance_x) / chance_x_fact  else:    mean_num = sum_mean_fun(case_list)    poisson_num = ((e ** (0-mean_num)) * mean_num ** chance_x) / chance_x_fact  return poisson_num

本文由永利电子游戏网站发布于计算机教程,转载请注明出处:统计算法_概率基础

关键词: